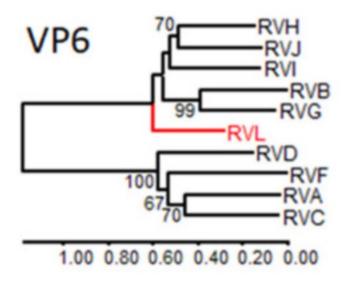


Rotavirus diversity, evolution, and lineage

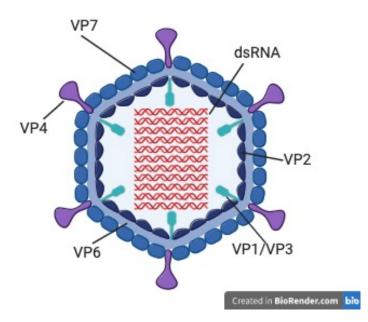
classification


Dr Celeste Donato, PhD, MASM, BBiomedScHons

- 1. Centre for Pathogen Genomics, University of Melbourne, Melbourne, Australia
- 2. Department of Microbiology and Immunology, Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Australia
- 3. Enteric Diseases Group, Murdoch Children's Research Institute, Melbourne, Australia
- 4. Department of Paediatrics, University of Melbourne, Melbourne, Australia
- 5. Department of Microbiology, Monash University, Melbourne, Australia

Rotavirus species

- Nine species recognised by ICTV (as of 2022)
 - 1. Rotavirus A
 - 2. Rotavirus B
 - 3. Rotavirus C
 - 4. Rotavirus D
 - · Rotavirus E
 - 5. Rotavirus F
 - 6. Rotavirus G
 - 7. Rotavirus H
 - 8. Rotavirus I
 - 9. Rotavirus J
 - Rotavirus K**
 - Rotavirus L**
 - Unclassified


Neighbor-joining phylogenetic tree of the VP6 gene of rotavirus species. Scaled amino acid substitutions per site.
Johne R, et al. Viruses. 2022 24;14(3):462.

Rotavirus genetic diversity

- 11 segments of dsRNA encoding 11-12 proteins
- Genome is approximately 18,555 base pairs
- Recombination is rare
- Reassortment is common not between different rotavirus species
- Nomenclature for strain names

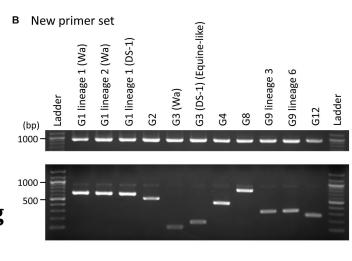
RV group/species of origin/country/common name/DOC/G- and P-type

Group B classification

- 1787 gene sequences in GenBank
- Whole genome classification proposed in 2018 by Douglas Marthaler & colleagues
- >80% of open reading frame of each gene
- No recent updates
- 250 sequences added to GenBank since this scheme was proposed
- No online classification tool

Gene segment	Gene	Genotypes	Nucleotide Cutoff
VP7	G	26	80%
VP4	Р	5	80%
VP6	1	13	81%
VP1	R	5	78%
VP2	С	5	79%
VP3	M	5	77%
NSP1	Α	8	76%
NSP2	N	10	83%
NSP3	Т	6	78%
NSP4	E	4	76%
NSP5	Н	7	79%

Group C


- 5139 gene sequences in GenBank
- Whole genome classification proposed in 2017 by Tohru Suzuki & Ayako Hasebe
- >80% of open reading frame of each gene
- No recent updates
- 2260 sequences added to GenBank since this scheme was proposed
- No online classification tool

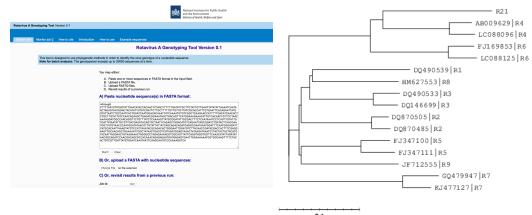
Gene segment	Gene	Genotypes	Nucleotide Cutoff
VP7	G	18	85%
VP4	P	21	85%
VP6	1	13	87%
VP1	R	4	74%
VP2	С	6	85%
VP3	M	6	85%
NSP1	Α	9	84%
NSP2	N	8	87%
NSP3	Т	6	85%
NSP4	Е	5	81%
NSP5	Н	4	80%

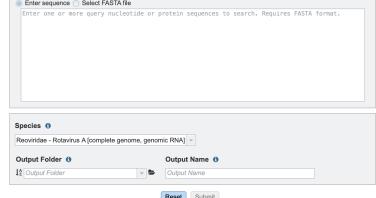
Group A - historical classification

- Classified into subgroups (SG) based on the antigenic specificity of the VP6
 protein (SG I, II, I+II, non-I or non-II) using MAbs
- In 1989 G (glycoprotein, VP7) and P (protease sensitive, VP4) serotyping developed
 - 14 G and 14 P serotypes
- In 2008 hemi-nested multiplex RT-PCR became routine for G and P genotyping
 - G types (1, 2, 3, 4, 8, 9, and 12)
 - P types ([4], [6], [8], [9], [10] and [11])
- Used by the WHO Global Rotavirus Surveillance Network and many national surveillance programs – sequencing not routine
- RT-qPCR assays exist but not routinely used

Group A - current classification

- Rotavirus Classification Working Group established in 2008
- 26 members of the RCWG
- New sequences are submitted for classification manually analyzed and the RCWG votes on agreement of new genotypes
- 500bp minimum or 50% of ORF
- Issues
 - RotaC offline for 3+ years and unlikely to be made available again
 - Some new genotype sequences
 not in GenBank


Jelle Matthijnssens, KU Leuven

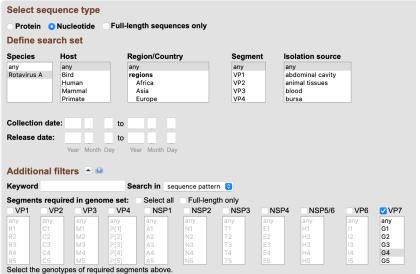

Gene segment	Gene	Genotypes	Nucleotide Cutoff
VP7	G	42	80%
VP4	Р	58	80%
VP6	1	32	85%
VP1	R	28	83%
VP2	С	24	84%
VP3	M	24	81%
NSP1	Α	39	79%
NSP2	N	28	85%
NSP3	Т	28	85%
NSP4	Е	32	85%
NSP5	Н	28	91%

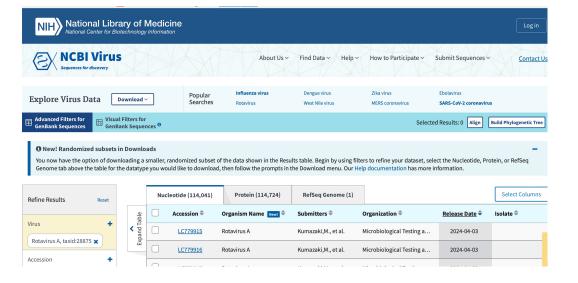
Group A - current classification

CENTRE FOR PATHOGEN GENOMICS

- Rotavirus A classification tool National Institute for Public Health and the Environment, Netherlands
 - Many new genotypes are not included 2015 onwards not reliable
 - Incorrectly assigns some genotypes based on phylogeny and bootstrap support
- RV-BRC tool
 - Appears to be limited to what was published in the 2011 classification paper
- Neither tool is contacting RCWG for updates / info

Semi-curated databases


Virus variation


- 74,381/114,164 sequences in GenBank
- Selecting by genotype is problematic
 - o e.g. 350 G4 VP7 not 1300

NCBI Virus

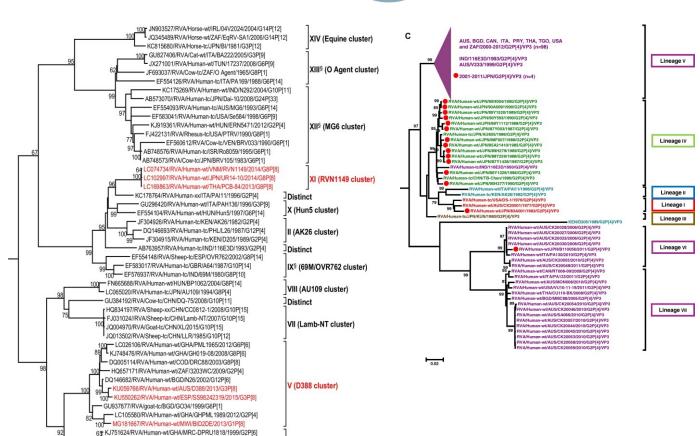
- Is up-to-date
- Can't filter by genotype

Other genotype classification

Random forest models - Tran et al 2023

- VP7 and VP4 only
- Genotype where the total count was <10 were excluded to prevent classification of genotypes with insufficient amount of data to train the algorithm
- **new classification tools need to be aware of existing classification used such a G and P typing or the RCWG recognized genotypes

Classification of group A rotavirus VP7 and VP4 genotypes using random forest


Hoc Tran*, Robert Friendship and Zvonimir Poljak

Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada

Genotype lineage classification

- Sub-lineage classification exists for many VP7 G and VP4 P genotypes
- Group 2 non-capsid genes
- Issues
 - Static no updates since 2019
 - Trees were made in MEGA topology changes if using RAxML or IQTree
 - Sequencing of older strains impacts tree topology

VI (B1711 cluster)

IV (TB-Chen cluster)

III (KUN cluster)

I (DS-1 cluster)

EF554082/RVA/Human-wt/BEL/B1711/2002/G6P[6]

L KJ753357/RVA/Human-wt/ZAF/MRC-DPRU618/2003/G2P[4 LC055547/RVA/Human-wt/THA/SKT-27/2012/G6P[14] 100— AB762772/RVA/Human-tc/JPN/AU605/1986/G2P[4]

AY787653/RVA/Human-wt/CHN/TB-Chen/1996/G2PI4

KC443587/RVA/Human-wt/AUS/CK20001/1977/G2P[4

DQ870505/RVA/Human-tc/USA/DS-1/1976/G2P[4]

Conclusions

- Issues
 - Diversity within genotypes is substantial
 - Sequencing is not routine and not timely often 3-5 years behind
 - Divergent strains emerge via zoonotic transmission which can alter tree topology
- Automated, up-to-date, genotyping tool is required
- Existing tools need to be updated