

Boots on the ground: State Public Health Laboratory's Perspective on Virus Pathogen Surveillance

Sean Wang, Ph.D | Sequencing and Bioinformatics Supervisor | Public Health Laboratory

MN-PHL is part of state government system (not necessary the case nationwide)

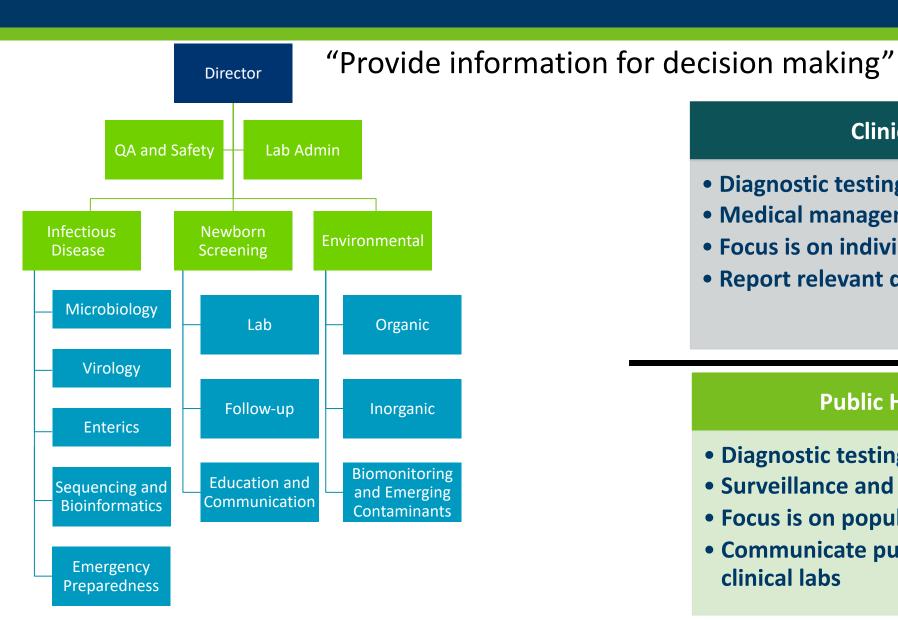
Commissioner of Health

Health Protection Bureau Health Improvement Bureau

Health Systems
Bureau

Health
Operations
Bureau

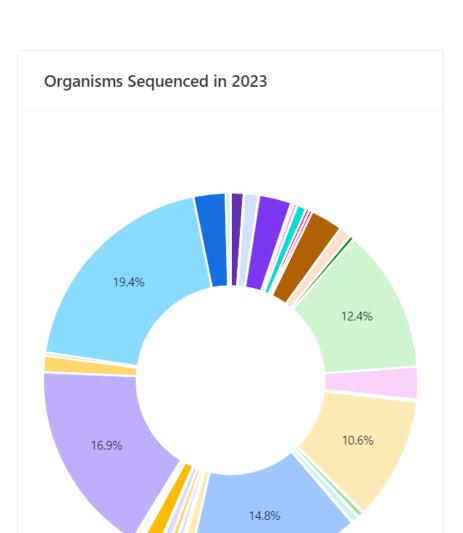
Environmental Health


Infection control and Epi

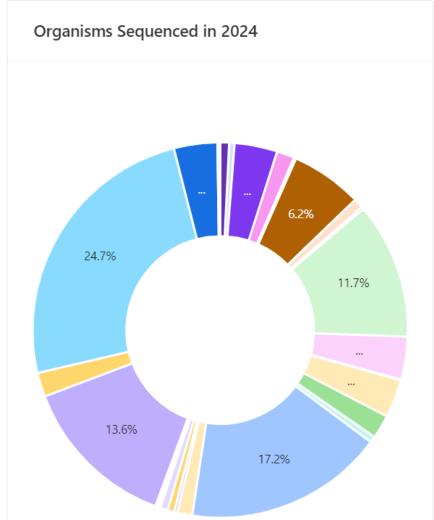
PHL

What does a public health laboratory do (or not do)?

Clinical Labs


- Diagnostic testing
- Medical management
- Focus is on individual health
- Report relevant data to public health

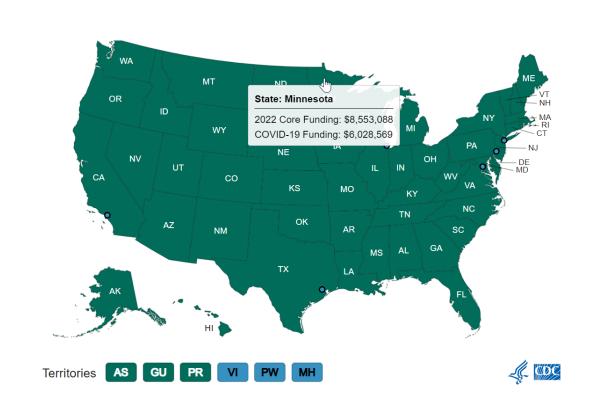
Public Health Labs

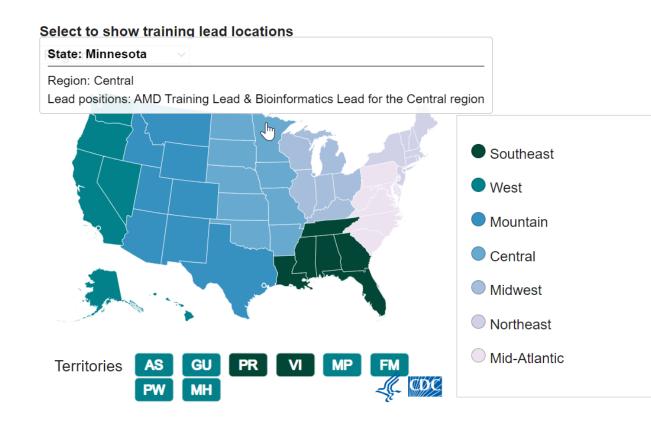

- Diagnostic testing, characterization
- Surveillance and response
- Focus is on population health
- Communicate public health needs to clinical labs

Infectious Disease Genomic Sequencing Program at MN-PHL

7401

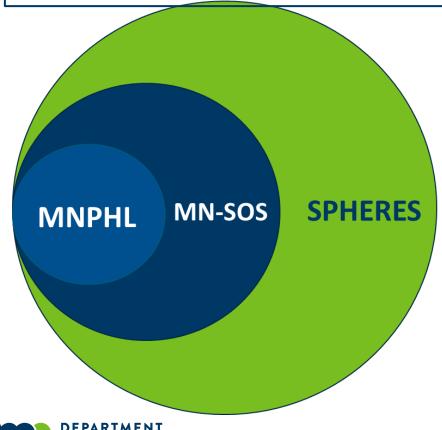
2113


- Streptococcus pneumoniae
- Salmonella
- Escherichia
- Clostridium difficile
- Campylobactor
- Streptococcus pyogens
- Candid auris


. . .

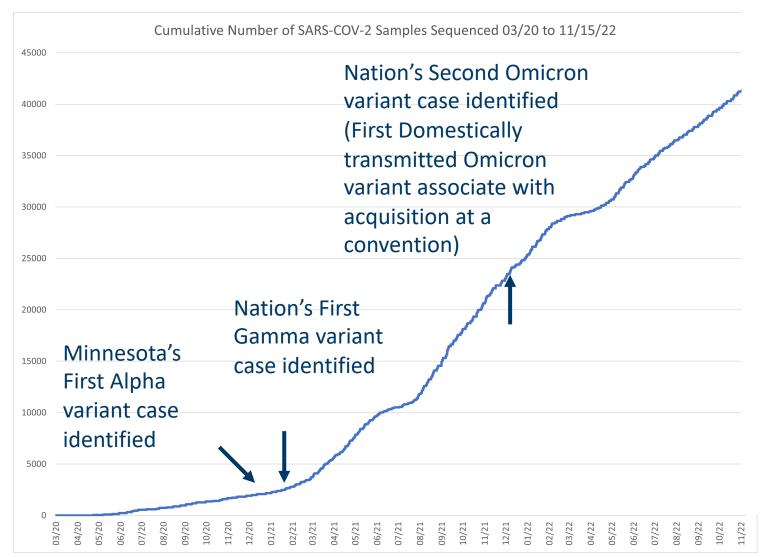
~7,000 SARS-C0V-2 ~800-1,000 Flu ~800 RSV

State Public Health System, including the Laboratories, are at Various Stage of Pathogen Genomic Surveillance

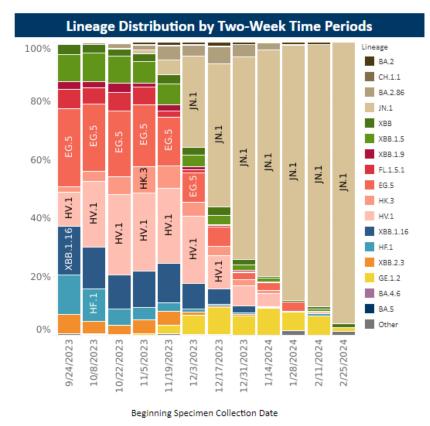

COVID Pandemic Response is the First Time State and Local Public Health Laboratories Go Full Steam with Viral Genomic Surveillance

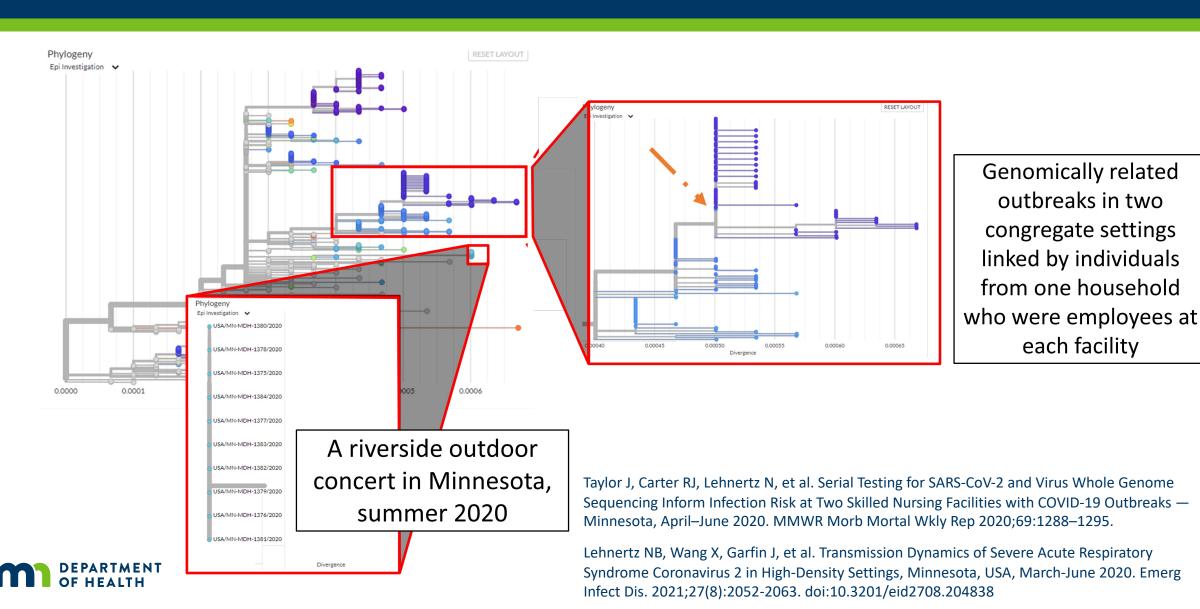
SPHERES: SARS-CoV-2 Sequencing for Public Health Emergency Response, Epidemiology, and

Surveillance


MN-SOS: Minnesota molecular surveillance of SARS-CoV-2. Participants including Mayo and

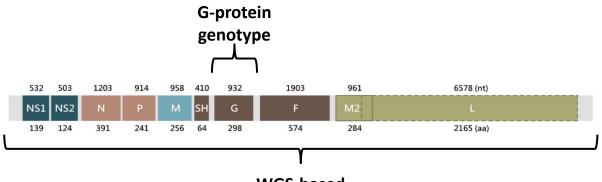
Univ. of Minnesota and all the other specimen sharing testing sites.




SARS-CoV-2 genomic mutation (VOCs & VOIs) surveillance at population level

Variants Circulating in Minnesota Lineage Distribution

COVID Outbreak Detection utilizing Genomic Epidemiology at Whole Genome Level



"The End User Experience"

- Early pandemic response phase: "Too many cooks in the kitchen". Public communication was challenging after "variants" concept emerged.
- Ongoing limitation of Laboratory Information Management System (LIMS) handling WGS data
- The SPHERE provided the first-ever direct communication platform among state/local public health laboratories, federal agencies and academic researchers.

Amino acid alignments >70%

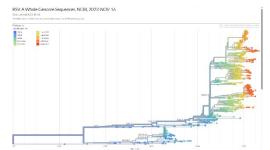
WGS-based lineages

- Viral subtypes A and B
- G-protein based genotyping
- Whole genome-based lineage typing



Nomenclature for RSV typing

+	Nex	xtclade	Start	Datas	et	R	esults)	Tree	þ	Expo	ort
# ?	i *	5	Sequence name			QC		Cla	ide ?	*	G clades	
0	0	ØMN-MD⊦	H-RSVB-00230	(isolate=MN-	и М	P	0	B.D.E.1			GB5.0.5a	
1	1	ØMN-MD⊦	H-RSVB-00235	[isolate=MN-	м М	P	0	B.D.E.1			GB5.0.5a	13
2	2	OMN-MDH	H-RSVB-00250	(isolate=MN-	и М	P	0	B.D.E.1			GB5.0.5a	
3	4	OMN-MDI	H-RSVB-00227	[isolate=MN-	м М	P	0	B.D.E.1	- 1		GB5.0.5a	
4	3	MN-MDH	H-RSVB-00226	[isolate=MN-	м М	P	0	B.D.4.1	.1		GB5.0.5a	
5	5	ØMN-MD⊦	H-RSVB-00231	[isolate=MN-	м М	P	0	B.D.E.1			GB5.0.5a	В
6	6	OMN-MDH	H-RSVB-00232	[isolate=MN-	и М	P	0	B.D.4.1	.1		GB5.0.5a	
7	8	OMN-MDH	H-RSVB-00237	[isolate=MN-	мМ	P	0	B.D.E.1	- 1		GB5.0.5a	
8	7	OMN-MDH	H-RSVB-00252	[isolate=MN-	М	P	0	B.D.E.1			GB5.0.5a	is.
9	9	MN-MDH	H-RSVB-00238	[isolate=MN-	м М	P	(3)	B.D.E.1			GB5.0.5a	
10	10	OMN-MDH	H-RSVB-00243	[isolate=MN-	и М	P	0	B.D.4.1	.1		GB5.0.5a	
4	Nex	ctclade	Start	Datase	•	Res	sults	▶ Tre	e l		Export	
#		Si	equence name			QC		Clade		G	clades ?	
0	0	MN-MDH	-RSVA-00160 [isolate=MN-M	M	P (B S	A.D.5.2		GA	2.3.5	
1	1	MN-MDH	-RSVA-00161[isolate=MN-M	M	P (B S	A.D.5		GΑ	2.3.5	
2	2	MN-MDH	-RSVA-00162 [isolate=MN-M	M	P (B S	A.D.5.2		GΑ	2.3.5	
3	3	MN-MDH	-RSVA-00163 [isolate=MN-M	M	P (B S	A.D.5		GΑ	2.3.5	
4	5	MN-MDH	-RSVA-00170 [isolate=MN-M	M	P (9 9	A.D.3		GΑ	2.3.5	
5	4	ØMN-MDH	-RSVA-00165 [isolate=MN-M	M	B (B S	A.D.5.2		GΑ	2.3.5	
6	6	ØMN-MDH	-RSVA-00171 [isolate=MN-M	M	P (B S	A.D.3		GΑ	2.3.5	
7	7	ØMN-MDH	-RSVA-00172 [isolate=MN-M	M	P (B S	A.D.3		GΑ	2.3.5	
8	8			isolate=MN-M	_	P (9 9	A.D.5.2			2.3.5	
9	9			isolate=MN-M		B (9 6	A.D.3			2.3.5	l.O
10	10	ØMN-MDH	-RSVA-00180 [isolate=MN-M	M	e (9 9	A.D.5.2		GA	2.3.5	


Sequencing and bioinformatics methods

- Tiled, overlapping amplicon approach (n = 50×350 bp)
- Sequenced on ONT GridION platform (similar to SCV2)
- QC and genome assembly using nf-core/viralrecon (modified)
- Phylogenies constructed using Nextstrain pipeline (Augur)
- Cross-reference to RSV-NET hospitalization data

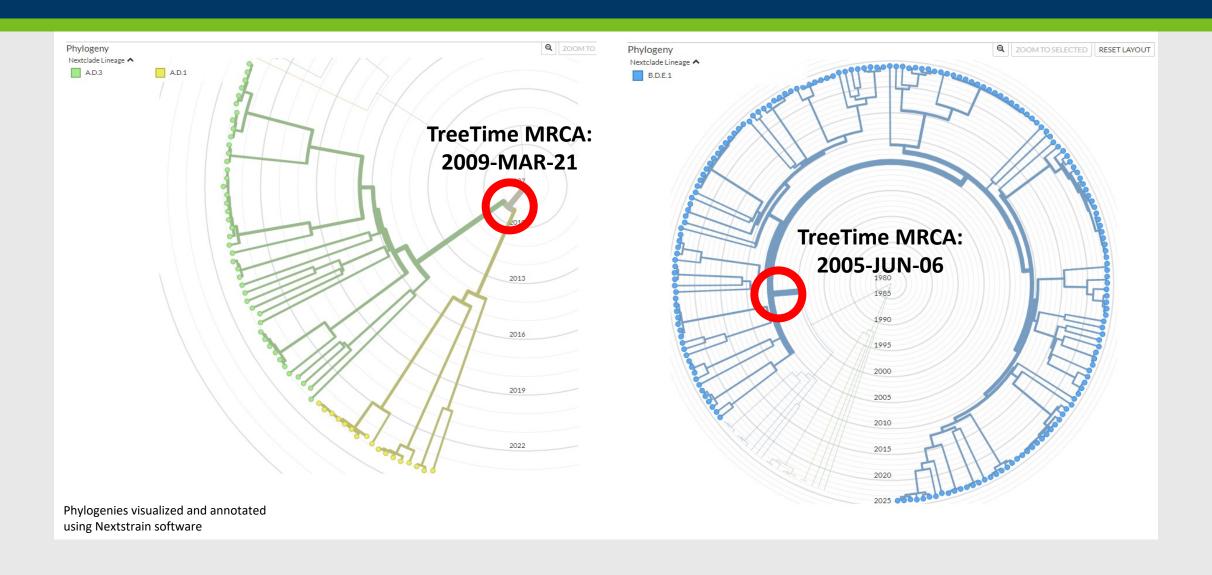
Phylogenies visualized and annotated using ITOL software

WGS of RSV from 2023-2024 respiratory season

• Through March:

• RSV-A: 214 sequences

• RSV-B: 201


Diversity of RSV-A lineages

 RSV-B dominated by B.D.E.1, but...

Phylogenies visualized and annotated using ITOL software

Even WGS lineage types are not specific enough

General thoughts from end-user perspective

- You see one public health laboratory; you see ONE public health laboratory (Easy usage of viral sub-species classification tools, data submission tools, bioinformatic tools)
- Current limitation of Public Health Laboratory Information Management System (LIMS) and Epidemiology database handling genomic epidemiology information (i.e. phylogeny) requires reasonable viral pathogen nomenclature system(s) for different purposes (i.e. outbreak investigation, public communication etc.)
- During public health emergency, state/local public health community need faster consensus of linage designation, followed with sustainable updates and timely communication

Acknowledgement

- Minnesota Public Health Laboratories
 CDC OAMD Office
 - Dan Evans
 - Matt Plumb
 - Jake Garfin
 - Henry Kunerth
 - Sarah Namugenyi
 - Bonnie Weber
 - Alyssa Mondelli
 - Kelly Pung

- State Public Health Bioinformatic (StaPh-B) group
- BV-BRC Viral Sub-species Classification workshop Organizing committee

Thank You!

For Further Questions: Sean Wang, Ph.D

Sean.Wang@state.mn.us

651-201-5050